Eagle Eye – CT Head Reading in the ED *Anton Helman CCFP(EM), FCFP* May 2018

Mnemonic Approach to Reading CT Head

'Blood Can Be Very Bad'

Blood

Cisterns

Bone

Ventricles

Brain

Tool #1: The Importance of Windows

PACS windows (brain vs blood vs bone windows) can be utilized when attempting to differentiate blood from brain tissue from bone (calcium) on a CT head

Tool #2: The Importance of Time

Acute (<1wk) bleeding insult causes blood to show up white on a CT head

Subacute (1-6wks) bleeding insult causes blood to show up isodense with brain tissue

Chronic (>4wks) bledding insult causes blood to show up as dark grey (darker than brain tissue)

Tool #3: Subdural blood wraps around one cerebral hemisphere which can sometimes cause blood to appear only in the intercerebral hemisphere.

*Note that it is crescent shaped and does NOT cross the midline as apposed to epidural hematomas that are lens shaped and can cross the midline

Tool #4: How to measure midline shift (so you can talk to the neurosurgeon with confidence)

- 1. Draw a line between the 2 bony prominences from the frontal and occipital midline
- 2. Measure the distance from the line to a) septum pellucidum (#2 red line in image below) which divides the lateral ventricules and the falx (yellow arrows in image below)
- 3. Which ever one is longer is the midline shift

Note that >5mm shift of usually an indication for operative management

Tool #5: Subarachnoid Blood fills the black spaces (see image below)

- 1. Cisterns 'Smile & Star'
- 2. Sylvian Fissure 'Between the cheeks' of the frontal and temporal lobes
- 3. Sulci 'finger-like' projections
- 4. Ventricles

Tool #6: Early Signs of Ischemic Stroke

- 1. Loss of Grey-White Differentiation
 - Insular ribbon sign
 - Blurring of the Basal Ganglia
 - Blurring of the Sulci
- 2. <u>Hyperdense MCA sign</u> (see white line indicated by the yellow arrow below) which has a high specificity for a large MCE territory stroke with poor outcome

Tool #7: Cytotoxic Edema of Ischemic Stroke vs Vasogenic Edema of Neoplasm

Ischemic stroke causes edema that follows a vascular distribution but does NOT respect gyri (see image on left below)

Neoplasms cause edema that does NOT respect a vascular distribution but does spare the gyri (see image on right below)

This is important as the ED management is very different

Cytotoxic Edema Stroke

Vasogenic Edema Neoplasm

Tool #8: Indications for CT with contrast

- Vasogenic edema or suspect mass
- Suspect cerebral venous thrombosis
- To differentiate traumatic cause from aneurismal cause of SAH
- Suspect carotid or vertetral artery dissection